
Best Practices Customer Success Product Updates Team Academy

BEST PRACTICES

An ORDER BY
statement improved our
query times by 100x
PostgreSQL queries can be sped up by creating the right indices, and
making sure that the indices are being used.

COLIN CHARTIER
15 OCT 2022
 4 MIN READ•

https://webapp.io/
https://webapp.io/blog/tag/best-practices/
https://webapp.io/blog/tag/customer-success/
https://webapp.io/blog/tag/product-updates/
https://webapp.io/blog/tag/webapp-io-team/
https://webapp.io/blog/tag/academy/
https://webapp.io/blog/tag/best-practices/
https://webapp.io/blog/author/colin/
https://webapp.io/blog/author/colin/

It's a tale as old as SQL databases - there's a critical code path being hit many times per
second, but its queries are inexplicably slow.

Brief description of the system
One of the products at Webapp.io is a hosted CI/CD product that integrates with GitHub,
GitLab, and BitBucket.

As mentioned in Postgres is a great pub/sub & job server, we have a table called ci_job

s which is inserted into whenever a developer commits, and it tracks the status of the CI

pipeline for that commit.

It's vitally important that these status updates are pushed to GitHub, GitLab, or BitBucket
on time, many organizations set CI to be required in order for code to be merged.

For that reason, we have two columns on the ci_jobs table:

https://webapp.io/blog/postgres-is-the-answer/

CREATE TABLE ci_jobs(

 ...

 status_change_time timestamp NOT NULL DEFAULT NOW(),

 status_notify_time status_notify_time timestamp NOT NULL DEFAULT to_timest

);

status_change_time is updated every time the status of the run changes - e.g., it's

started being processed, it's crashed, or it's succeeded.

status_notify_time keeps track of what we've last told GitHub the status is - GitHub

sets limits on how often you can tell it about status changes.

Finally, the listener simply polls the database for ci_job rows which have been changed,

but for which GitHub hasn't been recently told about the new changes:

UPDATE ci_jobs SET status_notify_time = status_change_time

WHERE id IN (

 SELECT ci_jobs.id

 FROM ci_jobs

 WHERE ci_jobs.status_notify_time != ci_jobs.status_change_time

 AND ci_jobs.status_notify_time < NOW()-'10 seconds'::interval

 LIMIT 10

 FOR UPDATE SKIP LOCKED

)

RETURNING id

Automatic warnings for slow queries
This system has proven itself fault tolerant and quite scalable, but we knew we'd

eventually hit limits on the number of updates being sent out.

For that reason, we wrapped our SQL model with a simple timer, that logged a warning if
a statement took more than 100ms to execute:

startTime := time.Now()

err := dbConn.Get(dest, query, args...)

if err != nil {

	 return err

}

if time.Now().Sub(startTime) > 100 * time.Millisecond {

	 klog.Warningf("Query took long (%v): %v (args=%+v)", time.Now().Sub(sta

}

Last week our alerting system started warning us that the notification query (UPDATE ci_

jobs SET status_notify_time) was taking over 100ms, so we had to search for ways

to optimize the database query.

Diagnosing the reason that the query is slow
In the past two years of administering a large PostgresSQL instance, we've built up a

repertoire of diagnostic tools. In this case, I reached for EXPLAIN ANALYZE and

explain.dalibo.com

EXPLAIN ANALYZE is a prefix to a regular query that explains why a query will take a

certain amount of time, instead of actually executing it.

In this case, we we analyzed the query:

EXPLAIN ANALYZE SELECT ci_jobs.id

FROM ci_jobs

WHERE ci_jobs.status_notify_time != ci_jobs.status_change_time

AND ci_jobs.status_notify_time < NOW()-'10 seconds'::interval

LIMIT 10

FOR UPDATE SKIP LOCKED;

And pasted the output into explain.dalibo.com:

In this case, the query was slow because it was scanning every CI job that had ever

occurred in order to find the ones that had recently changed

occurred in order to find the ones that had recently changed.

By inspecting the query, it was simple enough to create a SQL Index that would help

PostgreSQL find such rows faster:

CREATE INDEX to_be_updated_ci_jobs ON ci_jobs(id, status_notify_time ASC) W

This index is basically an ordered set of the rows which have different status_notify_time

and status_change_time fields, ordered by status_notify_time ascending.

However, the index wasn't being used!

EXPLAIN ANALYZE SELECT ci_jobs.id

FROM ci_jobs

WHERE ci_jobs.status_notify_time != ci_jobs.status_change_time

AND ci_jobs.status_notify_time < NOW()-'10 seconds'::interval

LIMIT 10

FOR UPDATE SKIP LOCKED;

Planning Time: 0.218 ms

Execution Time: 2064.317 ms

PostgreSQL wasn't using the index we'd created. A solid hypothesis why is that we are

choosing 10 arbitrary rows, and not the 10 oldest.

Indeed, if we told it that we wanted the 10 oldest rows:

EXPLAIN ANALYZE SELECT ci_jobs.id

FROM ci_jobs

WHERE ci_jobs.status_notify_time != ci_jobs.status_change_time

AND ci_jobs.status_notify_time < NOW()-'10 seconds'::interval

ORDER BY ci_jobs.status_notify_time

LIMIT 10

FOR UPDATE SKIP LOCKED;

Run your webapps in seconds

Don't develop like it's 2010. Webapp.io's serverless VMs give you instant preview
environments & 10x faster acceptance test runs.

Try for free

The query used our index (an Index scan instead of the original Sequential scan), and our
execution time plummeted to 24ms from 2000ms.

In time, the query estimator might better understand why this index is so small (very few

jobs are being changed, most are for commits long passed) and we'll be able to drop the

ORDER BY, but for now it's required for a 100x speed up.

Before index and ORDER BY: 2064ms

After index and ORDER BY: 24ms

MORE IN

17 Oct 2022 –
11 min read

BEST PRACTICES

How I Navigated the Open Source World: Matteo Collina

Webapp io’s SOC 2 Type 2 compliance journey

https://webapp.io/sign-up
https://webapp.io/blog/tag/best-practices/
https://webapp.io/blog/untitled-5/
https://webapp.io/blog/webappio-soc2-type2-compliance-journey/

12 Oct 2022 –
4 min read

7 Oct 2022 –
4 min read

Webapp.io’s SOC 2 Type 2 compliance journey

Making a faster "docker build" with FUSE

See all 22 posts
→

ZOYA FEZA
17 OCT 2022 11 MIN READ

Italian-born Matteo is the master of open-source. He is currently a Technical Director at nearForm and serves on
the Technical Steering Committee of the Node.js project, consulting for some of the biggest businesses in the

world.

BEST PRACTICES

How I Navigated the Open Source World: Matteo Collina

•

Read on to learn more about why we chose SOC2 Type 2 vs. other standards, and the vendors we selected to

ensure a smooth audit process.

BEST PRACTICES

Webapp.io’s SOC 2 Type 2 compliance journey

https://webapp.io/blog/webappio-soc2-type2-compliance-journey/
https://webapp.io/blog/making-nfs-with-fuse-and-rpc/
https://webapp.io/blog/tag/best-practices/
https://webapp.io/blog/author/zoya/
https://webapp.io/blog/untitled-5/
https://webapp.io/blog/untitled-5/
https://webapp.io/blog/author/zoya/
https://webapp.io/blog/webappio-soc2-type2-compliance-journey/
https://webapp.io/blog/webappio-soc2-type2-compliance-journey/

LYN CHEN
12 OCT 2022 4 MIN READ•

REFERENCE

What is CI?
Academy
Docs
API
Examples
Integrations
Website Linter
What is a webapp?

COMPANY

About Us
Press
Careers
Security
Contact Us
JellyBear
Pricing
Developer Newsletter
Subscribe to Webapp.io Updates

CASE STUDIES

bxblue - Fintech
Sheertex - E-commerce
Pulley - Fintech
Fellow - SaaS
Welcome - SaaS
Vitau - Healthtech
BioBox - Biotech
Mentum - SaaS

STATUS

Status Dashboard
Incidents

     +1 (800) 575-2971  hello@webapp.io

© Layer Devops Inc. 2020-2022 Terms of Service Privacy Policy

https://webapp.io/blog/author/lyn/
https://webapp.io/blog/webappio-soc2-type2-compliance-journey/
https://webapp.io/blog/author/lyn/
https://webapp.io/blog/what-is-ci/
https://webapp.io/blog/academy/
https://webapp.io/docs
https://webapp.io/docs/api
https://webapp.io/docs/examples
https://docs.webapp.io/integrations/cypress
https://webapp.io/website-linter
https://webapp.io/blog/what-is-a-webapp
https://webapp.io/about
https://webapp.io/press
https://webapp.io/careers
https://webapp.io/security
https://webapp.io/contact-us
https://webapp.io/jellybear
https://webapp.io/pricing
https://webapp.io/newsletter
https://webapp.io/subscribe
https://webapp.io/blog/bxblue-how-a-leading-fintech-supercharged-their-ruby-on-rails-developer-experience-with-webappio/
https://webapp.io/blog/case-study-how-e-commerce-company-sheertex-thinks-about-ci-cd/
https://webapp.io/blog/b2b-fintech-pulleys-engineers-leverage-advanced-webappio-workflows-to-serve-1000-startups/
https://webapp.io/blog/b2b-saas-case-study-how-webappio-helps-fellows-cto-power-cross-functional-collaboration-and-hackathon-culture/
https://webapp.io/blog/remote-video-platform-case-study-welcome/
https://webapp.io/blog/healthtech-case-study-docker-compose-vitau/
https://webapp.io/blog/how-biobox-analytics-took-their-testing-pipeline-from-hours-to-minutes-with-webappio/
https://webapp.io/blog/b2b-saas-pull-request-workflows-retail-mentum/
https://rootly.io/teams/layerci/status-pages/webapp-io-status-page/public
https://rootly.io/teams/layerci/status-pages/webapp-io-status-page/public/history
https://twitter.com/webappio
https://www.facebook.com/webappio
https://www.linkedin.com/company/webappio
https://github.com/apps/webappio/
tel:+1-800-575-2971
mailto:hello@webapp.io
https://webapp.io/terms
https://webapp.io/privacy-policy

